AP Calculus BC

Section 5.3 - FTC Free Response Questions

1. (Stewart - no calculator) Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown to the right.
a. Evaluate $g(0), g(1), g(2), g(3)$, and $g(6)$.
b. On what intervals is g increasing?

c. Where does g have a maximum value?
d. Evaluate $g^{\prime}(2)$
e. Find any points of inflection for g. Justify your answers.
\qquad

AP Calculus BC

Section 5.3 - FTC Free Response Questions

2. (Lucia - calculator) Water is draining out of a tank at a variable rate as given by the chart and graph below.

$t(\mathrm{~min})$	$R(t)$ (gallons/min)
0	0
5	5
10	20
20	30
30	15
35	0

a. Approximate the volume of water that has leaked from the tank from 0 to 35 minutes using a Riemann sum with a right-hand end point for the five unequal intervals indicated by the chart.
b. Find the value of $\frac{1}{20} \int_{10}^{30} R(t) d t$. Using appropriate units, interpret the meaning of $\frac{1}{20} \int_{10}^{30} R(t) d t$ in the context of the problem.
c. Calculate $R^{\prime}(25)$. Using appropriate units, interpret the meaning of $R^{\prime}(25)$ in the context of the problem.
d. If the rate of the leak is modeled by $Q(t)=16.78 \sin (0.15 t-1.25)+14.6$, at what time is the water leaking the fastest on the interval $[0,35]$?

AP Calculus BC

Section 5.3 - FTC Free Response Questions

3. (Lucia - no calculator) Let f by a function defined in the closed interval $0 \leq x \leq 6$. The graph of f consists of three line segments and a semicircle. Let $g(x)=3+\int_{2}^{x} f(t) d t$.
a. Find $g(1), g^{\prime}(1)$, and $g^{\prime \prime}(1)$.

b. What is the average rate of change of $g(x)$ in the interval $2 \leq x \leq 6$?
c. What is the average value of $g^{\prime}(x)$ on the same interval as part b)?
d. Identify the x - coordinate(s) of any relative extrema for g. Justify your answers.
e. Identify the x - coordinate(s) of any points of inflection for g. Justify your answers.

AP Calculus BC

Section 5.3 - FTC Free Response Questions

4. (Lucia - no calculator) The graph of $f(t)$, a continuous function defined on the interval $-3 \leq t \leq 4$, consists of two line segments and a quarter circle, as show in the figure. Let $g(x)=\int_{-3}^{x} f(t) d t$.
a. Evaluate $g(0)$ and $g(4)$.

b. Find the x - coordinate of the absolute maximum and absolute minimum of $g(x)$. Justify your answers.
c. Does $\lim _{x \rightarrow 2} g^{\prime \prime}(x)$ exist? Give a reason for your answer.
d. Find the x-coordinates of all inflection points of $g(x)$. Justify your answer.

AP Calculus BC

Section 5.3 - FTC Free Response Questions

5. (2002B BC) The graph of a differentiable function f on the closed interval $[-3,15]$ is shown in the figure. The graph of f has a horizontal tangent at $x=6$. Let $g(x)=5+\int_{6}^{x} f(t) d t$ for $-3 \leq x \leq 15$.

a. Find $g(6), g^{\prime}(6)$, and $g^{\prime \prime}(6)$.
b. On what intervals is g decreasing? Justify your answer.
c. On what intervals is the graph of g concave down? Justify your answer.
d. Find a trapezoidal approximation of $\int_{-3}^{15} f(t) d t$ using six subintervals of equal size.

AP Calculus BC

Section 5.3 - FTC Free Response Questions

6. (2005B BC4) The graph of the function f consists of three line segments.

a. Let g be the function given by $g(x)=\int_{-4}^{x} f(t) d t$. For each of $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$, find the value or state that it does not exist.
b. For the function g defined in part (a), find the x - coordinate of each point of inflection of the graph of g on the open interval $-4<x<3$. Explain your reasoning.
c. Let h be the function given by $h(x)=\int_{x}^{3} f(t) d t$. Find all values of x in the closed interval $-4 \leq x \leq 3$ for which $h(x)=0$.
d. For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning.
\qquad

AP Calculus BC

Section 5.3 - FTC Free Response Questions

1. (Stewart - no calculator) Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown to the right.
a. Evaluate $g(0), g(1), g(2), g(3)$, and $g(6)$.

$$
\begin{array}{ll}
g(0)=\int_{0}^{0} f(t) d t=0 & g(3)=\int_{0}^{3} f(t) d t=7 \\
g(1)=\int_{0}^{1} f(t) d t=2 & g(6)=\int_{0}^{4} f(t) d t=3 \\
g(2)=\int_{0}^{2} f(t) d t=5 &
\end{array}
$$

b. On what intervals is g increasing?

$$
g \text { is incr on }[0,3] \text { since } g^{\prime}=f>0 \text { on }(0,3)
$$

c. Where does g have a maximum value?
$g^{\prime}=f=0$ AT $x=3$

$$
g(0)=0
$$

$$
\text { max value is at } x=3
$$

WSE CAMDIDATES TEST:

$$
g(3)=7
$$

$$
g(7)=2
$$

d. Evaluate $g^{\prime}(2)$

$$
g^{\prime}(2)=f(2)=4
$$

e. Find any points of inflection for g. Justify your answers.

$$
g^{\prime \prime}=f^{\prime} \text { CUAMEES SIGN AT } x=2 \Rightarrow \text { P.O.I. © } x=2 \text {. }
$$

Section 5.3 - FTC Free Response Questions

2. (Lucia - calculator) Water is draining out of a tank at a variable rate as given by the chart and graph below.

$t(\mathrm{~min})$	$R(t)$ (gallons/min)
0	0
5	5
10	20
20	30
30	15
35	0

a. Approximate the volume of water that has leaked from the tank from 0 to 35 minutes using a Riemann sum with a right-hand end point for the five unequal intervals indicated by the chart.

$$
5(5)+5(20)+10(30)+10(15)+5(0)=575 \text { cAlcions. }
$$

b. Find the value of $\frac{1}{20} \int_{10}^{30} R(t) d t$. Using appropriate units, interpret the meaning of $\frac{1}{20} \int_{10}^{30} R(t) d t$ in the context of the problem.
the avo. rate mut $\mathrm{H}_{2} \mathrm{O}$ leaks
$\frac{1}{20} \int_{10}^{30} R(t) a t=\frac{1}{20}(600-50-75)=23.75 \frac{6 A C}{\mathrm{miN}}$
IS INCREASING $23.75^{\text {i KL/main }}$
From $t=10$ To $t=30$ mis.
c. Calculate $R^{\prime}(25)$. Using appropriate units, interpret the meaning of $R^{\prime}(25)$ in the context of the problem.

$$
R^{\prime}(25)=\frac{15-30}{10}=-1.5 \frac{\text { CAL }}{141 \omega^{2}} \quad \text { THE RATE } H_{2} \mathrm{O} \text { is LEAUIMG THE TANK }
$$

d. If the rate of the leak is modeled by $Q(t)=16.78 \sin (0.15 t-1.25)+14.6$, at what time is the water leaking the fastest on the interval $[0,35]$?

$$
\begin{array}{ll}
Q^{\prime}(t)=0 \text { AT } t=18.805 \quad & Q(0)=-15.9239 \quad H_{2} O \text { IS LEAKINE FASNEST } \\
& Q(18.505)=16.7799 \quad \text { AT } t=18.805 . \\
& Q(35)=-12.699
\end{array}
$$

\qquad

AP Calculus BC

Section 5.3 - FTC Free Response Questions
3. (Lucia - no calculator) Let f by a function defined in the closed interval $0 \leq x \leq 6$. The graph of f consists of three line segments and a semicircle. Let $g(x)=3+\int_{2}^{x} f(t) d t$.
a. Find $g(1), g^{\prime}(1)$, and $g^{\prime \prime}(1)$.
$g^{\prime}=f$

$$
\begin{aligned}
& g(1)=3+S_{2}^{\prime} f(t) a t=3+1=4 \\
& g^{\prime}(1)=f(1)=-2 \\
& g^{\prime \prime}(1)=f^{\prime}(1) \rightarrow \text { DNE. }
\end{aligned}
$$

b. What is the average rate of change of $g(x)$ in the interval $2 \leq x \leq 6$?

$$
\frac{g(6)-g(2)}{6-2}=\frac{2-\pi / 2}{4}=\frac{4-\pi}{8}=\frac{1}{2}-\frac{\pi}{8}
$$

c. What is the average value of $g^{\prime}(x)$ on the same interval as part b)?

$$
\left.\begin{array}{rl}
g_{A V E}^{\prime} & =\frac{1}{4} \int_{2}^{6} g^{\prime}(t) d t=\frac{1}{4} \int_{2}^{6} f(t) d t \\
& =\frac{1}{4}(g(6)-g(2))
\end{array}\right\}=\frac{4-\pi}{8}
$$

d. Identify the x-coordinate(s) of any relative extrema for g. Justify your answers.
$g^{\prime}=f=0$ AT $x=2,4$
g^{\prime} chunces From - TO + at $x=4$
$\Rightarrow g$ Hats rel. MIN AT $x=4$.
e. Identify the x-coordinate(s) of any points of inflection for g. Justify your answers.

$$
g^{\prime \prime} \text { CHANEES SIGN AT } x=1,2,3 \Rightarrow g \text { HUS. P.O.I. AT } x=1,2,3
$$

AP Calculus BC

Section 5.3 - FTC Free Response Questions

4. (Lucia - no calculator) The graph of $f(t)$, a continuous function defined on the interval $-3 \leq t \leq 4$, consists of two line segments and a quarter circle, as show in the figure. Let $g(x)=\int_{-3}^{x} f(t) d t$.
a. Evaluate $g(0)$ and $g(4)$.

$$
\begin{aligned}
& g(0)=\int_{-3}^{0} f(t) d t=3 \\
& g(4)=\int_{-3}^{4} f(t) d t=5-\pi
\end{aligned}
$$

b. Find the x-coordinate of the absolute maximum and absolute minimum of $g(x)$. Justify your

$$
\begin{array}{lll}
\text { answers. } \\
g^{\prime}=f=0 \text { AT } x=1,2 . & g(-1)=\int_{-3}^{-1} f(t) d t=4 & \text { ABS. MAx is AT } \\
& g(2)=\int_{-3}^{2} f(t) d t=3-\pi \quad x=-1 \\
& g(4)=5 \pi \\
& g(-3)=0 & \text { ABS mis is AT } \\
& x=2 .
\end{array}
$$

c. Does $\lim _{x \rightarrow 2} g^{\prime \prime}(x)$ exist? Give a reason for your answer.

$$
\begin{aligned}
& g^{\prime \prime}=f^{\prime} \quad \text { SINCE } \lim _{x \rightarrow 2^{+}} f^{\prime} \neq \lim _{x \rightarrow 2^{-}} f^{\prime} \Rightarrow \lim _{x \rightarrow 2} g^{\prime \prime} \text { DNE } \\
& \lim _{x \rightarrow 2^{+}} f^{\prime}=1 \\
& \lim _{x \rightarrow 2^{-}} f^{\prime} \Rightarrow \infty
\end{aligned}
$$

d. Find the x - coordinates of all inflection points of $g(x)$. Justify your answer.

$$
g^{\prime \prime}=f^{\prime} \text { CHAABES SION AT } x=0 \Rightarrow \text { D.O.I. © } x=0 \text {. }
$$

AP Calculus BC

Section 5.3 - FTC Free Response Questions

5. (2002B BC) The graph of a differentiable function f on the closed interval $[-3,15]$ is shown in the figure. The graph of f has a horizontal tangent at $x=6$. Let $g(x)=5+\int_{6}^{x} f(t) d t$ for $-3 \leq x \leq 15$.

a. Find $g(6), g^{\prime}(6)$, and $g^{\prime \prime}(6)$.

$$
\begin{aligned}
& g(6)=5+S_{6}^{6} f(t) d t=5 \\
& g^{\prime}(6)=f(6)=3 \\
& g^{\prime \prime}(6)=f^{\prime}(6)=0
\end{aligned}
$$

b. On what intervals is g decreasing? Justify your answer.

$$
g^{\prime}=f<0 \text { on }(-3,0) \cup(12,15) \Rightarrow g \text { is decerasinc on }[-3,0] \cup[12,15]
$$

c. On what intervals is the graph of g concave down? Justify your answer.

$$
g^{\prime \prime}=f^{\prime}<0 \text { on }(6,15) \Rightarrow g \text { 15 CEnctue Down on }(6,15)
$$

d. Find a trapezoidal approximation of $\int_{-3}^{15} f(t) d t$ using six subintervals of equal size.

$$
\begin{aligned}
& \frac{1}{2}(3)[-1+2(0)+2(1)+2(3)+2(1)+2(0)+-1] \\
& \quad=12
\end{aligned}
$$

AP Calculus BC

Section 5.3 - FTC Free Response Questions

6. (2005B BC4) The graph of the function f consists of three line segments.

a. Let g be the function given by $g(x)=\int_{-4}^{x} f(t) d t$. For each of $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$, find the value or state that it does not exist.

b. For the function g defined in part (a), find the x - coordinate of each point of inflection of the graph of g on the open interval $-4<x<3$. Explain your reasoning.
```
g'\prime}=\mp@subsup{f}{}{\prime}\mathrm{ CHANGES SION AT }x=1=>\mathrm{ POI. AT }x=
```

c. Let h be the function given by $h(x)=\int_{x}^{3} f(t) d t$. Find all values of x in the closed interval $-4 \leq x \leq 3$ for which $h(x)=0$.
$h(x)=0$ AT $x=3 \rightarrow S_{3}^{3} f(t) d t=0$
$h(x)=0$ A $x=1 \rightarrow S_{1}^{3} f(t) d t=0$
$h(x)=0$ AT $x=-1 \rightarrow \int_{-1}^{3} f(H d t=0$
d. For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning.
Cote IF $h^{\prime}=-\quad-1<0$

$$
\Rightarrow f>0 \text { on }(0,2)
$$

$$
\Rightarrow h \text { DECR on }[0,2]
$$

\qquad

